OMICRON

SGT45 VOC GAS TRANSMITTER

VOC GAS TRANSMITTER

Special Features:

- It uses PID sensor for longer life and higher accuracy.
- 4-20 mA & digital MODBUS output.
- · Direct digital readout on backlit LCD.
- · User friendly setup, magnetic buttons & LCD menu
- Non-intrusive calibration via Magnetic Pen.
- Configuration settings are password protected with password changing facility
- By using Electro Chemical / Pellister / NDIR Sensor Technology it provides a fast reliable output.
- · Available for all different VOCs
- The detector units are made of 316L stainless steel, and are rugged and resistant to corrosion.
- It is sealed against dust and splash water.
- · Uses reliable long life sensors.
- Capable of detecting down to PPB, PPM.
- Auto ranging of Gas concentration from PPB to PPM.

Application:

Refineries, Sewage Plants, Fertilizers Plants, Stack Monitoring, Gas Cylinder Bank, Ambient Monitoring, Pulp and Paper plants. Oil and Gas Industries, Gas Pipeline projects, as Metering Station, Heat Treatment Plants, Automotive Industries, Chemical Storage Area, Burner / Furnace Area, Power and Industrial Plant, Bullet Yard / Storage Yard, Chemical Processing Plants, Coal Mine and Confined Area, Offshore Drilling & Processing, Chemical & Petrochemical Plants, Acid Alkalizes & Dyes Mfg. Plants

Performance Specifications:

Performance

Accuracy : $\pm 1\%$ of Full Scale.

Range : As per table

Output : 4-20mA with range selection possibility.

communication : RS-485 Communication port with MODBUS RTU protocol.

Relay : 2 SPDT programmable relay.

Relay Rating : I20VAC/2A,24VDC/12A.

Supply Voltage : 18 to 36 VDC. Recommended 24VDC

Operating Temp. : -20°C to +55°C; Non - Condensing

Enclosure : Die cast Aluminium, Alloy, CMRI Certified enclosure.

Protection Class: IP-67

Cable Entry : Double compression cable gland. Ex-Proof type.

VOC GAS TRANSMITTER

List of Gas Transmitters With Ranges And Resolutions:

W L	ist of das Ital		15 WILLI	hanges Ai	IG IN	2501utions.			
SR.	GAS/VOC	FORMULA	LOW RANGE	HIGH RANGE	SR. NO	GAS/VOC	FORMULA	LOW RANGE	HIGH RANGE
01	Acetaldehyde	C₂H₄O	0 to 245	0 to 9999	38	Butyl acetate, n-	C ₆ H ₁₂ O ₂	0 to 120	0 to 9999
02	Acetic Acid	C ₂ H ₄ O ₂	0 to 1810	0 to 9999	39	Butyl acrylate, n-	C,H,2O3	0 to 75	0 to 7500
03	Acetic Anhydride	C₄H ₆ O₃	0 to 2000	0 to 9999	40	Butyl lactate	C ₇ H ₁₄ O ₃	0 to 125	0 to 9999
04	Acetone	C₃H₅O	0 to 35	0 to 3500	41	Butyl mercaptan	C₄H₁₀S	0 to 25	0 to 2500
05	Acrolein	C ₃ H ₄ O	0 to 2000	0 to 9999	42	Butylamine, 2-	C₄H,₁N	0 to 45	0 to 4500
06	Acrylic Acid	C ₃ H ₄ O ₂	0 to 135	0 to 9999	43	Butylamine, n-	C ₄ H ₁₁ N	0 to 50	0 to 5000
07	Allyl alcohol	C ₃ H ₆ O	0 to 105	0 to 9999	44	Camphene	C ₁₀ H ₁₆	0 to 25	0 to 2500
08	Allyl chloride	C ₃ H ₅ Cl	0 to 225 0 to 425	0 to 9999 0 to 9999	45 46	Carbon disulfide Carbon tetrabromide	CS ₂	0 to 70	0 to 7000
10	Ammonia Amyl aceta	H ₃ N C ₇ H ₁₄ O ₂	0 to 90	0 to 9000	46	Carvone, R-	CBR₄ C _ю H₁₄O	0 to 150 0 to 50	0 to 9999 0 to 5000
11	Amyl alcohol	C ₅ H ₁₂ O	0 to 160	0 to 9999	48	Chlorine dioxide	CIO ₂	0 to 50	0 to 5000
12	Aniline	C ₆ H ₇ N	0 to 25	0 to 2500	49	Chloro-1,3-butadiene, 2-	C ₄ H ₅ CI	0 to 160	0 to 9999
13	Anisole	C,H,O	0 to 25	0 to 2500		Chlorobenzene	C ₆ H ₂ CI	0 to 25	0 to 2500
14	Arsine	ASH₃	0 to 125	0 to 9999	51	Chloroethanol, 2-	C₂H₅CIO	0 to 500	0 to 9999
15	Asphalt, petroleum fumes		0 to 50	0 to 5000	52	Chloroethyl methyl ether, 2-	C ₃ H ₇ CIO	0 to 130	0 to 9999
16	Benzaldehyde	C,H ₆ O	0 to 45	0 to 4500	53	Chlorotoluene, o-	C,H,CI	0 to 25	0 to 2500
17	Benzene	C ^e H ^e	0 to 25	0 to 2500	54	Chlorotoluene, p-	C ₇ H ₇ CI	0 to 25	0 to 2500
18	Benzenethiol	C₅H₅SH	0 to 35	0 to 3500	55	Chlortrifluoroethylene	C ₂ CIF ₃ C ₁₀ H ₁₆ O	0 to 50	0 to 5000
19	Benzonitrile	C₁H₅N	0 to 35	0 to 3500		Citral		0 to 50	0 to 5000
20	Benzyl alcohol	C,H ₈ O	0 to 65	0 to 6500	57	Citronellol	C ₁₀ H ₂₀ O	0 to 50	0 to 5000
21 22	Benzyl chloride Benzyl formate	C,H,CI	0 to 30 0 to 40	0 to 3000 0 to 4000	58 59	Cresol, m-	C ₇ H ₈ O C ₇ H ₈ O	0 to 55	0 to 5500 0 to 5500
23	Biphenyl	C ₈ H ₈ O ₂ C ₁₂ H ₁₀	0 to 40	0 to 2000		Cresol, o- Cresol, p-	C ₇ H ₈ O	0 to 55 0 to 55	0 to 5500
24	Bis(2,3-epoxypropyl) ether	C ₆ H ₁₀ O ₃	0 to 150	0 to 9999	61	Crotoaldehyde	C ₄ H ₆ O	0 to 50	0 to 5000
25	Bromine	BR ₂	0 to 1000	0 to 9999	62	Cumene	C ₉ H ₁₂	0 to 30	0 to 3000
26	Bromobenzene	C _s H _s BR	0 to 35	0 to 3500	63	Cyclohexane	C ₆ H ₁₂	0 to 65	0 to 6500
27	Bromoethane	C₂H₅BR	0 to 250	0 to 9999	64	Cyclohexanol	C ₆ H ₁₂ O	0 to 145	0 to 9999
28	Bromoethyl methyl ether, 2-	C ₃ H ₇ OBR	0 to 125	0 to 9999	65	Cyclohexanone	C ₆ H ₁₀ O	0 to 55	0 to 5500
29	Bromoform	CHBR₃	0 to 140	0 to 9999		Cyclohexene	C ₆ H ₁₀	0 to 40	0 to 4000
30	Bromopropane, 1-	C ₃ H ₇ BR	0 to 65	0 to 6500	67	Cyclohexylamine	C ₆ H ₁₃ N	0 to 50	0 to 5000
31	Butadiene	C⁴H ^e	0 to 40	0 to 4000		Cyclopentane	C ₅ H ₁₀	0 to 200	0 to 9999
32	Butadiene diepoxide,1,3-	C ₄ H ₆ O ₂	0 to 200	0 to 9999	69	Decane, n-	C ₁₀ H ₂₂	0 to 50	0 to 5000
33	Butane, –	C ₄ H ₁₀	0 to 2315	0 to 9999	70	Diacetone alcohol	C ₆ H ₁₂ O ₂	0 to 40	0 to 4000
34 35	Butanol, 1- Buten-3-ol, 1-	C₄H₁₀O C₄H₃O	0 to 200 0 to 60	0 to 9999 0 to 6000	71 72	Dibenzoyl peroxide Dibromochloromethane	C ₁₄ H ₁₀ O ₄ CHBR,CI	0 to 40 0 to 500	0 to 4000 0 to 9999
36	Butene,1-	C ₄ H ₈ O	0 to 65	0 to 6500	73	Dibromoethane 1,2-	C ₂ H ₄ BR ₂	0 to 70	0 to 7000
37	Butoxyethanol, 2-	C ₆ H ₁₄ O ₂	0 to 55	0 to 5500	74	Dichloroacetylene	C ₂ Cl ₂	0 to 250	0 to 9999
75	Dichlorobenzene, o-	C _k H ₄ CI ₂	0 to 25	0 to 2500	146	Ethylene oxide	C ₂ H ₄ O	0 to 750	0 to 9999
76	Dichloroethene, 1, 1-	C ₂ H ₂ Cl ₂	0 to 50	0 to 5000	147	Ferrocene	C ₁₀ H ₁₀ Fe	0 to 730	0 to 4000
77	Dichloroethene, cis-1,2-	02112012	0 to 40	0 to 4000	148	Formamide	CH ₃ ON	0 to 100	0 to 9999
78	Dichloroethene, trans-1, 2-	C ₂ H ₂ CI ₂	0 to 35	0 to 3500	149	Furfural	C ₅ H ₄ O ₂	0 to 70	0 to 7000
79	Dichloroethylene 1,2-	C ₂ H ₂ CI ₂	0 to 40	0 to 4000	150	Furfuryl alcohol	C,H,O,	0 to 100	0 to 9999
80	Dichloromethane	CH ₂ CI ₁₂	0 to 1950	0 to 9999	151	Gasoline vapors		0 to 55	0 to 5500
81	Dicyclopentadiene	C ₁₀ H ₁₂	0 to 45	0 to 4500	152	Gasoline vapors		0 to 40	0 to 4000
82	Diesel Fuel		0 to 40	0 to 4000	153	Gasoline vapors 92 octane		0 to 40	0 to 4000
83	Diethyl ether	C ₁₂ H ₁₀ O	0 to 45	0 to 4500	154	Germane	GeH₄	0 to 500	0 to 9999
84	Diethyl maleate	C ₈ H ₁₂ O ₄	0 to 100	0 to 9999	155	Glutaraldehyde	C ₅ H ₈ O ₂	0 to 45	0 to 4500
85	Diethyl phthalate	C ₁₂ H ₁₄ O ₄	0 to 50	0 to 5000	156	Heptan-2-one	C ₇ H ₁₄ O	0 to 35	0 to 3500
86	Diethyl sulphide	C4H ₁₀ SO ₄	0 to 150	0 to 9999	157	Heptan-3-one Heptane –	C₁H₁₄O	0 to 40	0 to 4000
87 88	Diethyl sulphide Diethylamine	C₄H _∞ S C₄H₁₁N	0 to 30 0 to 50	0 to 3000 0 to 5000	158	Heptane – Hexamethyldisilazane,	C ₇ H ₁₆	0 to 105	0 to 9999
89	Diethylaminoethanol, 2-	C ₄ H ₁₅ ON	0 to 30	0 to 9999	159	1,1,1,3,3,3	C ₆ H ₁₉ NSi ₂	0 to 50	0 to 5000
90	Diethylaminopropylamine, 3		0 to 50	0 to 5000	160	Hexamethyldisiloxane	C ₈ H ₁₈ OSi ₂	0 to 15	0 to 1500
91	Dihydrogen selenide	H ₂ Se	0 to 50	0 to 5000	161	Hexan-2-one	C ₆ H ₁₂ O	0 to 40	0 to 4000
92	Dihydroxybenzene, 1,2	C ₄ H ₆ O ₂	0 to 50	0 to 5000	162	Hexane –	C ₆ H ₁₄	0 to 210	0 to 9999
93	Dihydroxybenzene, 1,3	C ₈ H ₈ O ₂	0 to 50	0 to 5000	163	Hexene, 1-	C ₆ H ₁₂	0 to 45	0 to 4500
94	Diisobutylene	C ₈ H ₁₆	0 to 30	0 to 3000	164	Hydrazine	H ₄ N ₂	0 to 150	0 to 9999
95	Diisopropyl ether	C ₄ H ₁₄ O	0 to 35	0 to 3500	165	Hydrogen peroxide	H ₂ O ₂	0 to 200	0 to 9999
96	Diisopropylamine	C ₆ H ₁₅ N	0 to 35	0 to 3500	166	Hydrogen sulfide	H ₂ S ₃	0 to 200	0 to 9999
97	Diketene	C ₄ H ₄ O ₂	0 to 110	0 to 9999	167	Hydroquinone	C ₆ H ₆ O ₂	0 to 40	0 to 4000
98	Dimethoxymethane	C ₃ H ₈ O ₂	0 to 70	0 to 7000	168	Hydroxypropyl acrylate 2-	C ₆ H ₁₀ O ₃	0 to 75	0 to 7500

VOC GAS TRANSMITTER

LIST OF GAS TRANSMITTERS WITH RANGES & RESOLUTIONS

SR. NO.	GAS/VOC	FORMULA	LOW RANGE	HIGH RANGE	SR. NO.	GAS/VOC	FORMULA	LOW RANGE	HIGH RANGE
99	Dimethyl Cyclohexane, 1,2	C ₈ H ₁₆	0 to 55	0 to 5500	169	Iminodi(ethylamine) 2,2-	C ₄ H ₁₃ N ₃	0 to 45	0 to 4500
100	Dimethyl disulphide	C ₂ H ₆ S ₂	0 to 10	0 to 1000	170	Iminodiethanol 2,2'-	C ₄ H ₁₁ NO ₂	0 to 80	0 to 8000
101	Dimethyl ether	C ₂ H ₆ O	0 to 65	0 to 6500	171	Indene	C _s H _s	0 to 25	0 to 2500
102	Dimethyl phthalate	C10H10O4	0 to 50	0 to 5000	172	Iodine	l_2	0 to 10	0 to 1000
103	Dimethyl sulphide	C₂H₄S	0 to 25	0 to 7500	173	lodoform	CHI ₃	0 to 75	0 to 7500
104	Dimethylacetamide N, -	C4H,NO	0 to 65	0 to 6500	174	Iodomethane	CH ₃ I	0 to 20	0 to 2000
105	Dimethylamine	C ₂ H ₇ N	0 to 70	0 to 7000	175	Isoamyl acetate	C ₇ H ₁₄ O ₂	0 to 80	0 to 8000
106	Dimethylaminoethanol	C⁴H"NO	0 to 75	0 to 7500	176	Isobutane	C ₄ H ₁₀	0 to 400	0 to 9999
107	Dimethylaniline, NN-	C ₈ H ₁₁ N	0 to 30	0 to 3000	177	Isobutanol	C ₄ H ₁₀ O	0 to 175	0 to 9999
108	Dimethylbutyl acetate	C ₈ H ₁₆ O ₂	0 to 80	0 to 8000	178	Isobutyl acetate	C ₆ H ₁₂ O ₂	0 to 115	0 to 9999
109	Dimethylethylamine, NN-	C ₄ H ₁₁ N	0 to 40	0 to 4000	179	Isobutyl acrylate	C ₇ H ₁₂ O ₂	0 to 65	0 to 6500
110	Dimethylformamide	C ₃ H ₇ NO	0 to 45	0 to 4500	180	Isobutylene	C,H ₈	0 to 50	0 to 9999
111	Dimethylhydrazine, 1,1-	C ₂ H ₈ N ₂	0 to 50	0 to 5000	181 182	Isobutyraldehyde Isodecanol	C⁴H ⁸ O	0 to 60 0 to 45	0 to 6000 0 to 4500
112 113	Diinitrobenzene, m -	C ₆ H₄N₂O₄	0 to 150 0 to 250	0 to 9999 0 to 9999	183	Isononanol	C ₁₀ H ₂₂ O C ₉ H ₂₀ O	0 to 75	0 to 7500
114	Diinitrobenzene, p - Dinonyl phthalate	C ₂₄ H ₄₂ O ₄	0 to 505	0 to 5000	184	Isooctane	C ₈ H ₁₈	0 to 55	0 to 5500
115	Dioxane 1,2-	C ₂₄ H ₄ O ₂	0 to 303	0 to 7500	185	Isooctanol	C ₈ H ₁₈ O	0 to 85	0 to 8500
116	Dioxane 1,4-	C ₄ H ₈ O ₂	0 to 75	0 to 7500	186	Isopentane	C ₅ H ₁₂	0 to 300	0 to 9999
117	Dipentene	C ₁₁ H ₁₆	0 to 45	0 to 4500	187	Isophorone	C ₀ H ₁₄ O	0 to 40	0 to 4000
118	Diphenyl ether	C ₁₂ H ₁₀ O	0 to 40	0 to 4000	188	Isoprene	C,H,	0 to 35	0 to 3500
119	Disulphur dichloride	S ₂ CI ₂	0 to 150	0 to 9999	189	Isopropanol	C ₃ H ₈ O	0 to 220	0 to 9999
120	Di-tert-butyl-p-cresol	C,,H,,O	0 to 50	0 to 5000	190	Isopropyl acetate	C ₅ H ₁₀ O ₂	0 to 110	0 to 9999
121	Divinylbenzene	C ₁₀ H ₁₀	0 to 20	0 to 2000	191	Isopropyl chloroformate	C ₄ H ₇ O ₂ CI	0 to 80	0 to 8000
122	Dodecanol	C ₁₂ H ₂₆ O	0 to 45	0 to 4500	192	Jet Fuel JP-4		0 to 40	0 to 4000
123	Epichlorohydrin	C ₃ H ₅ CIO	0 to 400	0 to 9999	193	Jet Fuel JP-5		0 to 35	0 to 3500
124	Ethanol	C₂H ₆ O	0 to 435	0 to 9999	194	Jet Fuel JP-8		0 to 35	0 to 3500
125	Ethanolamine	C ₂ H ₇ NO	0 to 150	0 to 9999	195	Kerosene		0 to 40	0 to 4000
126	Ethoxy-2-propanol, 1-	C,H10O2	0 to 100	0 to 9999	196	Ketene	C ₂ H ₂ O	0 to 150	0 to 9999
127	Ethoxyethanol, 2-	C ₄ H ₁₀ O ₂	0 to 1490	0 to 9999	197	Maleic anhydride	C ₄ H ₂ O ₃	0 to 100	0 to 9999
128	Ethoxyethyl acetate, 2-	C ₆ H ₁₂ O ₃	0 to 150	0 to 9999	198	Mercaptoacetic acid	C,H,O ₂ S	0 to 50	0 to 5000
129	Ethyl (S)-(-)-lactate	C ₅ H ₁₀ O ₃	0 to 150	0 to 9999	199	Mesitylene	C ₉ H ₁₂	0 to 15	0 to 1500
130	Ethyl acetate	C ₄ H ₄ O ₂	0 to 180	0 to 9 999	200	Methacrylic acid	C ₄ H ₈ O ₂	0 to 115	0 to 9999
131	Ethyl acrylate	C ₅ H ₈ O ₂	0 to 100	0 to 9999	201 202	Methacrylonitrile ethanol	C₄H₅N	0 to 250 0 to 9999	0 to 9999
132 133	Ethyl amine Ethyl benzene	C₂H₂N	0 to 50 0 to 25	0 to 5000 0 to 2500	202	Methoxyethanol, 2-	CH₄O C₃H ₈ O₂	0 to 135	0 to 9999
134	Ethyl butyrate	C ₈ H ₁₀	0 to 50	0 to 5000	203	Methoxyethoxyethanol, 2-	C ₅ H ₁₂ O ₃	0 to 70	0 to 7000
135	Ethyl chloroformate	C ₈ H ₁₂ O ₂ C ₃ H ₂ O ₃ C	0 to 4000	0 to 9999		Methoxymethylethoxy-2-		0 10 70	0 10 7000
136	Ethyl cyanoacrylate	C ₆ H ₇ O ₂ N	0 to 75	0 to 7500	205	propanol	C ₇ H ₁₆ O ₃	0 to 65	0 to 6500
137	Ethyl decanoate	C ₁₂ H ₂₄ O ₂	0 to 90	0 to 9000	206	Methoxypropan-2-ol	C ₄ H ₁₀ O ₂	0 to 150	0 to 9999
138	Ethyl formate	C ₃ H ₄ O ₂	0 to 1500	0 to 9999	207	Methoxypropyl acetate	C ₆ H ₁₂ O ₃	0 to 60	0 to 6000
139	Ethyl hexanoate	C ₈ H ₁₆ O ₂	0 to 130	0 to 9999	208	Methyl acetate	C ₃ H ₆ O ₂	0 to 260	0 to 9999
140	Ethyl hexanol, 2-	C ₈ H ₁₈ O	0 to 75	0 to 7500	209	Methyl acrylate	C ₄ H ₈ O ₂	0 to 170	0 to 9999
141	Ethyl hexyl, acrylate 2-	C ₁₁ H ₂₀ O ₂	0 to 50	0 to 5000	210	Methyl bromide	CH ₃ BR	0 to 95	0 to 9500
142	Ethyl mercaptan	C ₂ H _e S	0 to 35	0 to 3500	211	Methyl cyanoacrylate	C ₅ H ₅ O ₂ N	0 to 250	0 to 9999
143	Ethyl octanoate	C ₁₀ H ₂₀ O ₂	0 to 115	0 to 9999	212	Methyl ethyl ketone	C*H8O	0 to 40	0 to 4000
144	Ethylene	C ₂ H ₄	0 to 400	0 to 9999	213	Methyl ethyl ketone peroxides	0 10 1	0 to 40	0 to 4000
145	Ethylene glycol	C ₂ H ₈ O ₂	0 to 1000	0 to 9999	214	Methyl isobutyl ketone	C ₆ H ₁₂ O	0 to 40	0 to 4000
215	Methyl isothiocyanate Methyl mercaptan	C₂H₃NS	0 to 30	0 to 3000	269	Pinene, alpha	C ₁₀ H ₁₄	0 to 15	0 to 1500
216 217	Methyl mercaptan Methyl methacrylate	CH₄S C₄H₄O₂	0 to 35 0 to 80	0 to 3500 0 to 8000	270	Pinene, beta Piperidine	C,₀H,₅ C,H,₁N	0 to 15	0 to 1500
218	Methyl propyl ketone	C₅H₁₀O	0 to 40	0 to 4000	271 272	Pipervlene	C _s H _•	0 to 45 0 to 35	0 to 4500 0 to 3500
219	Methyl salicylate	C,H,O,	0 to 60	0 to 6000	273	Prop-2-yn-1-ol	C₃H₃ C₃H₃	0 to 65	0 to 6500
220	Methyl sulphide	C ₂ H ₆ S	0 to 25	0 to 2500	274	Propan-1-ol	C₃H _{ao}	0 to 240	0 to 9999
221	Methyl t-butyl ether	C ₅ H ₁₂ O	0 to 40	0 to 4000	275	Propane-1,2-diol, total	C ₃ H _• O ₂	0 to 500	0 to 9999
222	Methyl-2-propen-1-ol, 2 -	C ₄ H ₈ O	0 to 55	0 to 5500	276	Propene	C ₃ H _a	0 to 70	0 to 7000
223	Methyl-2-pyrrolidinone, N-	C _s H _a NO	0 to 45	0 to 4500	277	Propionaldehyde	C ₃ H ₆ O	0 to 85	0 to 8500
224	Methyl-4,6-dinitrophenol, 2 -	C,H ₆ N₂O ₆	0 to 150	0 to 9999	278	Propionic acid	C ₃ H ₆ O ₂	0 to 400	0 to 9999
225	Methyl-5-hepten-2-one, 6-	C _s H ₁₄ O	0 to 40	0 to 4000	279	Propyl acetate, n -	C ₅ H ₁₀ O ₂	0 to 125	0 to 9999
226	Methylamine	CH₅N	0 to 70	0 to 7000	280	Propylene oxide	C ₃ H ₆ O	0 to 350	0 to 9999
227	Methylbutan-1-ol, 3 -	C ₅ H ₁₂ O	0 to 170	0 to 9999	281	Propyleneimine	C_3H_7N	0 to 65	0 to 6500
228	Methylcyclohexane	C ₇ H ₁₄	0 to 55	0 to 5500	282	Pyridine	C _s H _s N	0 to 40	0 to 4000
229	Methylcyclohexanol, 4 -	C ₇ H ₁₄ O	0 to 120	0 to 9999	283	Pyridylamine 2-	C ₅ H ₆ N ₂	0 to 400	0 to 2000
230	Methylcyclohexanone 2	C,H,2O	0 to 50	0 to 5000	284	Styrene	C ₈ H ₈	0 to 20	0 to 3000
231	Methylheptan-3-one, 5 -	C _s H _{te} O	0 to 40	0 to 4000	285	Terphenyls	C ₁₈ H ₁₄	0 to 30	0 to 2500
232	Methylhexan-2-one, 5 -	C₁H₁₄O	0 to 40	0 to 4000	286	Terpinolene	C ₁₀ H ₁₆	0 to 25	0 to 9999
233	Methylhydrazine	CH ₆ N ₂	0 to 65	0 to 6500	287	Tert-butanol	C.H100	0 to 130	0 to 9999

VOC GAS TRANSMITTER

LIST OF GAS TRANSMITTERS WITH RANGES & RESOLUTIONS

SR. NO.	GAS/VOC	FORMULA	LOW RANGE	HIGH RANGE	SR. NO.	GAS/VOC	FORMULA	LOW RANGE	HIGH RANGE
234	Methyl-N-2,4, 6-	C ₇ H ₅ N ₅ O ₈	0 to 150	0 to 9999	288	Tetrabromoethane, 1,1,2,2-	C ₂ H ₂ BR ₄	0 to 100	0 to 5000
235	tetranitroaniline, – Methylpent-3-en-2-one, 4-	C ₆ H ₁₀ O	0 to 35	0 to 3500	289	Tetracarbonylnickel	NiC ₄ O ₄	0 to 50	0 to 3500
236	Methylpentan-2-ol, 4 -	C,H,O	0 to 140	0 to 9999	290 291	Tetrachloroethylene Tetrachloronaphthalenes,	C ₂ CI ₄ C ₁₀ H ₄ CI ₄	0 to 35 0 to 50	0 to 5000 0 to 9999
237	Methylpentane-2,4-diol, 2-	C ₆ H ₁₄ O ₂	0 to 200	0 to 9999	231	all isomers	010114014	0 10 30	0 10 3333
238	Methylpropan-2-ol, 2 -	C ₄ H ₁₀ O	0 to 175	0 to 9999	292	Tetraethyl orthosilicate	C ₈ H ₂₀ O₄Si	0 to 100	0 to 5000
239 240	Methylstyrene Mineral oil	C ₉ H ₁₀	0 to 25 0 to 40	0 to 2500 0 to 4000	293 29 4	Tetrafluoroethylene Tetrahydrofuran	C₂F₄ C₄H ₈ O	0 to 50 0 to 80	0 to 8000 0 to 5000
241	Mineral spirits		0 to 40	0 to 4000	295 295	Tetramethyl succinonitri	C ₄ H ₈ O C ₈ H ₁₂ N ₂	0 to 50	0 to 5000
242	Naphthalene	C ₁₀ H ₈	0 to 20	0 to 2000	296	Therminol	8. 112. 12	0 to 50	0 to 2500
243	Nitric oxide	NO	0 to 400	0 to 9999	297	Toluene	C ₇ H ₈	0 to 25	0 to 8000
244 245	Nitroaniline 4 - Nitrobenzene	C ₈ H ₈ N ₂ O ₂ C ₂ H ₅ NO ₂	0 to 40 0 to 85	0 to 4000 0 to 8500	298 299	Toluene-2,4-diisocyanat Toluenesulphonylchloride, p	C₂H₅N₂O₂ - C₁H₁SO₂C	0 to 80 0 to 150	0 to 8000 0 to 9999
246	Nitrogen dioxide	NO ₂	0 to 500	0 to 9999	300	Toluidine, o-	C ₇ H ₉ N	0 to 25	0 to 2500
247	Nitrogen trichloride	NCI ₃	0 to 50	0 to 5000	301	Tributyl phosphate	C ₁₂ H ₂₇ O₄P		0 to 9999
248	Nonane, n -	C ₉ H ₂₀	0 to 65	0 to 6500	302	Tributylamine	C ₁₂ H ₂₇ N	0 to 50	0 to 5000
249 250	Norbornadiene, 2,5 - Octachloronaphthalene	C ₇ H ₈ C ₁₀ CI ₈	0 to 30 0 to 50	0 to 3000 0 to 5000	303 304	Trichlorobenzene 1,2,4-	C ₆ H ₃ CI ₃	0 to 30	0 to 3000 0 to 3500
251	Octachioronaphthalene Octane, n -	C ₁₀ CI ₈ C ₈ H ₁₆	0 to 80	0 to 8000	304	Trichloroethylene Trichlorophenoxyacetic	C ₈ H ₈ O ₃ C ₃	0 to 35 0 to 50	0 to 3500 0 to 5000
252	Octene, 1 -	C ₈ H ₁₆	0 to 35	0 to 3500	550	acid, 2,4,5-	0,11,0303	0 10 00	0 10 0000
253	Oxydiethanol 2, 2 -	C ₄ H ₁₀ O ₃	0 to 200	0 to 9999	306	Triethylamine	C ₆ H ₁₅ N	0 to 45	0 to 4500
254	Paraffin wax, fume		0 to 50	0 to 5000	307	Trimethylamine	C ₃ H ₉ N	0 to 25	0 to 2500
255 2 56	Paraffins, normal Pentacarbonyl iron	Fe _s C _s O _s	0 to 50 0 to 50	0 to 5000 0 to 9999	308 309	Trimethylbenzene mixtures Trimethylbenzene, 1,3,5-	C ₉ H ₁₂ C ₉ H ₁₂	0 to 15 0 to 15	0 to 1500 0 to 1500
257	Pentan-2-one	C ₅ H ₁₀ O	0 to 40	0 to 5000	310	Turpentine	C ₁₀ H ₁₆	0 to 30	0 to 3000
258	Pentan-3-one	C ₅ H ₁₀ O	0 to 40	0 to 4000	311	TVOC		0 to 50	0 to 5000
259	Pentandione, 2,4 -	C ₅ H ₈ O ₂	0 to 40	0 to 4000	312	Undecane, n -	C ₁₁ H ₂₄	0 to 45	0 to 4500
260 261	Pentane, n - Peracetic acid	C ₅ H ₁₂ C ₂ H ₄ O ₃	0 to 395 0 to 100	0 to 9999 0 to 9999	313 314	Vinyl acetate Vinyl bromide	C₄H₅O₂ C₂H₃BR	0 to 55 0 to 50	0 to 5500 0 to 5000
262	Petroleum ether	2403	0 to 45	0 to 4500	315	Vinyl chloride	C ₂ H ₃ CI	0 to 105	0 to 9999
263	Phenol	C ₆ H ₆ O	0 to 60	0 to 6000	316	Vinyl-2-pyrrolidinone, 1-	C ₆ H ₉ NO	0 to 45	0 to 4500
264	Phenyl propene, 2 -	C ₉ H ₁₀	0 to 20	0 to 2000	317	Xylene mixed isomers	C ₈ H ₁₀	0 to 20	0 to 2000
265 266	Phenyl-2,3-epoxypropyl ether Phenylenediamine, p -	er C ₉ H ₁₀ O ₂ C ₆ H ₈ N ₂	0 to 40 0 to 30	0 to 4000 0 to 3000	318 319	Xylene, m - Xylene, o-	C ₈ H ₁₀ C ₈ H ₁₀	0 to 20 0 to 30	0 to 2000 0 to 3000
267	Phosphine	PH ₃	0 to 100	0 to 9999	320	Xylene, p-	C _* H ₁₀	0 to 30	0 to 3000
268	Picoline, 3-	C ₆ H ₇ N	0 to 45	0 to 4500	321	Xylidine, all	C ₈ H ₁₁ N	0 to 35	0 to 3500

VOC GAS TRANSMITTER

HOW TO ORDER

Basic Model:					SGT45				
Caracteristics Enclosure:					FLP				
FLP Flameproof					Ö				
🌣 Input:					C40				
Please select the Serial No. of the gas from the list given									
Sensor Housing:					-				
1 PVC Material	2	Teflon	- 5	Stainless Steel (SS316)					
					Q				

Ordering Example: SGT45-FLP-C40

Omicron Sensing LLC

10467, Whiterose Lane, Sandiego, CA - 92127 United States of America Tel: (858) 939-9266

web: www.omicron-sensing.com
Email: sales@omicron-sensing.com

